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The axisymmetric eigenmodes for the velocity and pressure disturbances in the 
incompressible Couette flow between two concentric rotating cylinders with 
no-slip boundary conditions are computed numerically and plotted. As found 
previously in the narrow-gap approximation as well as for the Rayleigh-B6nard 
system, damped propagating viscous modes are present for wide ranges of 
parameters. Closed-form solutions for the special case of corotating cylinders 
show that the time constants for the decay of the eigenmodes then become 
insensitive to the ratio of the radii of the cylinders. 

KEY WORDS:  Circular Couette flow; hydrodynamic eigenmodes; damped 
propagating modes. 

The Couette system of fluid flow between two concentric rotating cylinders 
has been a paradigm for many theoretical and experimental investiga- 
tions (1'2~ on the subject of instability and bifurcation; in particular, the first 
transition from uniform circular flow to Taylor vortex flow has been exten- 
sively investigated./3~ We shall be concerned here, however, with small 
damped disturbances around the uniform circular flow, the Couette flow, 
before the onset of the transition to the Taylor vortex flow takes place. 

One of the interesting effects occurring in the stable regime of a fluid 
subject to a constant temperature gradient, i.e., for the Rayleigh-Bdnard 
system, is that if a stabilizing gradient is applied (heating from above), the 
heat and viscous modes--which are purely diffuse in equilibrium--couple 
and become propagating for sufficiently large negative Rayleigh numbers. 
This effect has been measured in an experiment of forced Rayleigh scatter- 
ing by Boon etal.  ~4'5~ Since the governing equations for these visco-heat 
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modes for the Rayleigh-B6nard system are similar to the equations for the 
viscous modes of the Couette system, Cohen and Schmitz (6) suggested that 
a similar propagation might also be present in the Couette system. Follow- 
ing this suggestion, we computed earlier the eigenvalue spectra for the 
viscous modes of the Couette system in the narrow-gap approximation (v) 
andfound indeed propagating modes in a wide range of system parameters. 
In fact, since the narrow-gap equations are identical with those for the 
Rayleigh-B6nard system for special values of parameters, the eigenvalue 
spectra in the two systems are similar near those parameter values. The 
Couette system, however, has more parameters and hence shows a richer 
behavior. In this note, we extend our previous computations to the general 
case of arbitrary gap size. 

We consider the Couette system consisting of two concentric cylinders 
with inner and outer radii R1 and R 2 which rotate with angular velocities 
g21 and f2 2, respectively. The motion of the fluid, with kinematic viscosity 
v, between the cylinders is uniformly circular. The eigenmodes are 
described by the incompressible Navier-Stokes equations, linearized 
around circular Couette flow. This yields for small velocity disturbances an 
eigenvalue problem for the three components of the velocity disturbance 
and the accompanying pressure disturbance. Restricting consideration to 
the axisymmetric modes and ignoring the boundaries at the top and 
bottom of the cylinders, we have that an eigenmode is characterized by a 
time constant s, an axial wavenumber k, and a radial eigenfunction for 
each velocity component since the eigenmodes can be expressed in the form 

 iw(r)/cl I 
\ p(r) /c2  / 

where'ur, Uo, and Uz are the components of the velocity disturbance in 
cylindrical coordinates, P is the pressure disturbance divided by the 
density, u, v, w, p are the eigenfunctions, and cl, c z are constants. 

In general, the system of equations is not solvable in closed form, so 
we follow the method of Chandrasekhar2: First the full system of equations 
is simplified by eliminating P and uz. Using the shorthand notation D = d~ 
and D,  = d~ + 1/( with ( =  r /R2 and the dimensionless constants a = k R 2  

and ~=sRZz/V,  as well as setting cl=2~l(l~--tlZ)R2/v(1--tl 2) and 
c2 = c i R 2 / v ,  one obtains the familiar equations 

( D D ,  -- a 2 + a ) ( D D ,  - a 2) u(~) = Ta2(~c -- ~-2) v(~) 
(2) 

( D D ,  - a 2 + a) v ( ( )  = u( ( )  
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where the dimensionless constants are angular velocity ratio # =  f22/s 
radius ratio r/= R1/R2, Taylor number 

T=4f2~R4(1 --#)(1 -#/02)(1 _~/2) 2 v-2 

and ~c=(1 -# / t l 2 ) / (1 -# ) .  The pressure and axial velocity components 
are then obtained from the radial velocity component using 
ap(~) = (D ,D-  a2+ 0)w(~) and aw(~)= D,u(~). We use no-slip boundary 
conditions (b.c.), i.e., the fluid sticks to the side walls of the cylinders, 
which are v(~) = u(~) = D,u(~) = 0 for ~ = 1 and r/. The method of solution 
is a variational method in which u(~) and v(~) are expanded in a complete 
set of orthogonal functions with coefficients to be determined by the secular 
equation. This is donenumerically with truncated expansions; the method 
requires only the first few terms of the orthogonal functions to achieve a 
high degree of convergence. 

The results are shown in Figs. 1 and 2 for three radius ratios for two 
values of/~, one for rotation of the cylinders in the same direction and the 
other for rotation in opposite directions. It is more illuminating to present 
them in dimensionless parameters using the gap width d =  R 2 - - R 1 ,  i.e., in 
gt=kd, ~=sd2/v, and T = ( 1 - r / 2 ) ( 1 - ~ / )  4 ]Tl/r /2[1-#[.  Because Ttr 
T and ~c are both positive for kt > 1 or/~ < q 2 and negative for ~/2 < # < 1. 
Hence, the absolute sign in the definition of T presents no ambiguity. 

The spectra can be categorized in two regimes, in analogy to the 

7=1/4 ~=l /Z  7=3/4 

5OOO 

Fig. 1. Spectra for #=0 .5  and a = 4 ;  solid lines are real eigenvalues and dotted (dashed) 
lines are the real (imaginary) parts of complex eigenvalues. The abscissas of the three plots 
have the same linear scale from 0 to 10,000. 
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Fig. 2. Spectra for p = - 0 . 4  and ~ = 4; see also caption of Fig. I. 

heating-from-above and the heating-from-below regimes of the 
Rayleigh-B6nard system; these regimes are determined by the nature of the 
fundamental mode, namely, in the first regime (analogous to heating from 
above) this mode exhibits predominantly a damped propagation, while in 
the second regime it is purely diffusive, i.e., purely damped. The first two 
plots of Fig. 1 and the first plot of Fig. 2 are in the first regime; the eigen- 
value of the fundamental mode is real only for very small values of T and 

is represented by the lower portion of the lowest solid curve, while it is 
complex in the other regions of the plots, with its real part represented by 
the lowest dotted line and its imaginary part by the highest dashed line. 
The rest of the two figures is in the second regime; the eigenvalue of the 
fundamental mode is then real, represented by the lowest solid curve, 
which decreases with increasing Taylor number until it vanishes at some 
critical Taylor number To. At this point the transition to Taylor vortex 
flow takes place, so that the spectrum ceases to be meaningful beyond To., 
since the linearized equations are no longer valid. Propagation of the 
higher eigenmodes in the second regime occurs over a large range of Taylor 
numbers in the counterrotating case (Fig. 2), but not in the other case 
(Fig. 1). Since these modes are highly damped, they could only be detected, 
e.g., in the short-time behavior of the system, when the higher eigenmodes 
are still important. For the long-time behavior, the system is dominated by 
the lowest eigenmode, which propagates only in the first regime. 
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Comparing the above results with the corresponding spectra of the 
Rayleigh-B~nard system, (7'8) we note the following. The eigenvalue equa- 
tions for the visco-heat modes in the Rayleigh B6nard system at Prandtl 
number l are similar to those for the viscous modes in the Couette system, 
especially in the narrow-gap approximation; the Rayleigh number in the 
former plays the same role as the Taylor number in the latter. (6) For fixed 
system parameters in the Rayleigh-B6nard system, there is always a point 
of instability for sufficiently large positive Rayleigh numbers (negative tem- 
perature gradients) and a point of propagation for sufficiently large 
negative Rayleigh numbers. However, for fixed t/ and ~t in the Couette 
system, the Taylor number is restricted to one sign and hence the system 
can either become strongly propagating or become unstable as the Taylor 
number is varied. As to the detailed behavior of the spectra, those of the 
Rayleigh-B6nard system as a function of the Rayleigh number can be 
approximated by a parabolic function for a wide range of Rayleigh num- 
bers. (9) This feature is also present in the Couette system in Fig. 1, where 
# > 0 ,  and in Fig. 2, where /z<0. We note that only the case # > 0  is 
analogous to the Rayleigh-B6nard system; for /z < 0, i.e., counterrotating 
cylinders, the eigenvalue spectra are quite different for the two systems. 
Also, we found no analogy in the Rayleigh-B6nard system for the feature 
of wide regions of propagation in the higher modes appearing in these 
figures. 

For the special case in which the two cylinders rotate with the same 
angular velocity, i.e., for # = 1, Eqs. (2) can be solved in closed form. This 
is because for #--* 1, T ~  0 and ~: ~ o% with T~c--] ' / (1-  t/)4; hence the 
term containing 1/~ 2 vanishes and the equations contain only the Bessel 
operator DD,. The eigenfunctions for the velocity disturbances are now 
expressible as linear combinations of Bessel functions: 

3 

U(~) = Z rC2k-- 1/ l ( /~k~) -[- C2kKl(~k~)'] 
k = l  

3 
u(~) = ~ ( #~ -  a 2 + ~ ) [ c ~ _  ,11(#~) + C~K~(#~) ]  (3) 

k = l  

i 
L flk(fl~--a2+a)EC2k ,Io(flk~)-Cz~Ko(flk~)] w ( ~ )  = a ~=1 

where I,~(z) and K,(z) are, respectively, the nth-order modified Bessel 
functions of the first and second kinds and the coefficients Cj, j =  1,..., 6, 
are determined by the b.c. The constants fl~, l =  1, 2, 3, in the argument 
of the Bessel functions are the roots of a cubic equation, 
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( / ~ 2  - -  a 2 + (7)2 (a 2 _ ] ~ 2 )  _jr_ T•a 2 = 0, in terms of the eigenvalue (7, which is 
then determined by the b.c. 

v(1 ) = w(t/) = u(1 ) = u(q) = w(1 ) = w(t]) = 0 

This yields a set of linear homogeneous equations for the Cj, j = 1,..., 6, and 
nontriviality requires that the determinant of a 6 x 6 coefficient matrix 
vanishes. Some results a re  shown in Fig. 3; this case is in the same regime 
as that of the first two plots of Fig. 1 and the spectra resemble those plots. 
The /t = 1 case has the striking feature of being remarkably insensitive to 
variations in the radius ratio t/. In addition, we also computed the eigen- 
functions for the fundamental mode at T =  5000 and ~/= 1/4. The results 
are plotted in Fig. 4. We remark that each component is either 
predominantly real or predominantly imaginary. We have used the relation 
T =  (1 - r / )  4 c 2 to determine cl, which is necessary for obtaining the correct 
relative magnitudes of the components of the velocity disturbance in these 
figures. 

We note that propagating modes are found in the Rayleigh-B6nard 
system in the higher excited modes in a small parameter range, so-called 
"windows of propagation, ''(8~ which can be thought of as resulting from the 
interaction of two adjacent modes; the same feature is found in the spectra 
of the Couette system, (7) except that here the "interaction" can be so large 
that the eigenmodes are propagating in a wide region of parameters. 
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Fig. 3. Spectra  for # = 1 and a = 4. The cases t /=  1/4 and q = 3/4 are plotted; the latter has 
a slightly larger imaginary part of the complex eigenvalue, and a slightly smaller real 
eigenvalue or real part of the complex eigenvalues. See also caption of Fig. 1. 
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Fig. 4. The eigenfunctions of the fundamental  mode  for y = 1, q = 1/'4, and T =  5000; the 
dotted, dashed, and chain-dashed lines describe u(~)/cl, v(~), and w(~)/cl, respectively. 

The frequency of oscillation of a column of rotating water has been 
measured by Fultz(1~ he used a vertically oscillating small disk to excite 
particular modes, and observed the motion of some injected dye to deter- 
mine the resonance frequencies. Despite the rather large amplitude of the 
motion of the disk, he found remarkable agreement with the predictions of 
the theory of inviscid fluids applied to small disturbances. 

In addition to the damped propagating axisymmetric eigenmodes 
determined in this note, also spiral eigenmodes could be considered. In fact, 
for sufficiently large T> T<. and t/<0, i.e., counterrotating cylinders, 
propagating spiral modes have been observed, so that damped propagating 
spiral modes could be expected for T<  T C. 

Finally we remark that a simplification of the problem could be made 
by replacing the no-slip b.c. with simpler b.c. which are in between the two 
extremes of slip and no-slip b.c. Such b.c. could be "vertical-slip" b.c., 
which would allow only the axial component of the velocity disturbance to 



1130 Gwa and Cohen 

be nonvanishing at the walls. Then, instead of the no-slip b.c., we would 
have v(ff)= u(ff)= D D . u ( ~ ) =  0 for ff = 1 and t/. These b.c. could be useful 
since results could be obtained much more  easily than for no-slip b.c. In  
fact, using these b.c., one can make an estimate, for example, of  the impor-  
tance of the damping  as compared  to the oscillation in the Fultz experi- 
ment. For  the parameters  used in Fultz '  experiment one finds then for the 
fundamental  mode  that  the oscillation is precisely that  of the inviscid 
theory, while the damping  is 0.5% of the oscillation, in agreement  with 
Fultz '  observations. However,  this same procedure could give estimates for 
the damping  and oscillation for different parameter  ranges as well. 
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